Mitigation of Dynamic Stresses of a Ball Mill Using Rubber Coatings

Arturo Ocampo-Ramirez, Dayvis Fernández-Valdés, María Victoria Gómez-Águila, Minelkis Machado Molina, María del Carmen Sigler-Muñoz, Ernesto Ramos-Carbajal

Abstract

Ball mills are widely used in mining, agriculture and cement industries. There is little information on the design of such equipment from the structural point of view. Some of the main causes of failure are fractures of their walls, due to the impact of steel balls on their internal surfaces. Normally, they are attenuated through the use of wet milling, which acts as a shock absorber and a casing that protects the internal surfaces of the mill. However, it should be noted that this casing is not used in small mills. To avoid failure, the thickness of the mill is over-designed, increasing its cost. The design of small mills improves when considering the direct impact of the steel balls on the inner wall. This leads to the most critical condition of operation. In this work, the resulting stress field was evaluated following a couple of approaches: (I) the dynamic coefficient of impact loads was evaluated with the working energy principle and (II) a numerical analysis was performed with the Finite Elements Method. The operating parameters were calculated with the BM-Crush Program. The results showed that the cyclic stresses were close to the elastic limit. It was proposed to implement a rubber coating on the internal walls of the mill and the stress field was reduced 8.3 times, for a rubber thickness of 3 mm. In this way, a potential fatigue failure could be reduced.

Keywords

Internal Wall; Load Impact; Direct Impact; Finite Elements

Full Text:

PDF HTML XML-JATS EPUB

References

BOND, F.C.: “Crushing and Grinding Calculations”, British Chemical Engineering, 6(1): 378-391, 543-548, 1960, ISSN: 0007-0424.

BUDYNAS, R.G.; NISBETT, J.K.: Shigley’s Mechanical Engineering Design, Ed. Mc Graw-Hill, México, DF, 2015, ISBN: 13: 978-0073398204.

DUDA, W.H.: Manual tecnológico del cemento, Ed. Reverte, México, DF, 352 p., 2003, ISBN: 978-84-7146-095-0.

FLORES, J.E.A.; LI, Q.M.; SHEN, L.: “Numerical Simulations of Quasi-Static Indentation and Low Velocity Impact of Rohacell 51 WF Foam”, International Journal of Computational Methods, 11: 1 – 12, 2014, ISSN: 0219-8762.

GILARDI, G.; SHARF, I.: “Literature Survey of Contact Dynamics Modelling”, Mechanism and Machine Theory, 37: 1213–1239, 2002, ISSN: 0094-114X.

GOLDSMITH, W.: Impact: The Theory and Physical Behavior of Colliding Solids, Ed. Edward Arnold Publishers Ltd., London, U K, 1960, ISBN: 0-486-42004-3.

HERTZ, H.: “Uber die Beruhung Fester Elastischer Korper”, L. Reine Angewandte Mathematik, 92: 156-171, 1882, ISSN: 0075-4102.

KUBAIR, D.V.: “Simulation of Low-velocity Impact Damage in Layered Composites using a Cohesive-based Finite Element Technique”, Defense Science Journal, 54: 571-578, 2004, ISSN: 0011-748X.

MEOA, M.; MORRISA, A.J.; VIGNJEVICA, R.; MARENGOB, G.: “Numerical Simulations of Low-velocity Impact on an Aircraft Sandwich Panel”, Composite Structures, 62: 353 – 360, 2003, ISSN: 0263-8223.

NEIKOV, O.D.; MURASHOVA, I.B.; YEFIMOV, N.A.; NABOYCHENKO, S.: Handbook of Non-Ferrous Metal Powders: Technologies and Applications, Ed. Elsevier, USA, 644 p., 2009, ISBN: 978-0-08-055940-7.

OCAMPO, A.; HERNÁNDEZ, L.H.; URRIOLAGOITIA, G.; FERNÁNDEZ, D.; CERVANTES, R.; FERNÁNDEZ, D.: “Diseño de un Molino para Reciclar Pastas de Freno de Tracto-Camiones Usando el Método de Bond”, Revista Ciencias Técnicas Agropecuarias, 24(3): 45-51, 2015, ISSN: 1010-2760, e-ISSN: 2071-0054.

OCAMPO, A.; HERNÁNDEZ, L.H.; URRIOLAGOITIA, G.; FERNÁNDEZ, D.; FERNÁNDEZ, D.; CERVANTES, R.: “Evaluación de la Integridad Estructural de un Molino de Bolas en Condiciones Estáticas y Dinámicas Usando el Método del Elemento Finito (MEF)”, Revista Ciencias Técnicas Agropecuarias, 25(2): 5-16, 2016, ISSN: 1010-2760, e-ISSN: 2071-0054.

OSORIO, A.; BUSTAMANTE, O.; MARIN, J.M.; RESTREPO, G.: “Evaluación del uso de poliacrilamida como modificador reológico en la molienda de pulpas de cuarzo”, Revista Colombiana de Materiales, (5): 244–249, 2014, ISSN: 2256-1013.

SOLÓRZANO, J.; PEREA, J.; TORO, E.; VANEGAS, O.: “Reducción del impacto ambiental de un residuo peligroso de la industria del cobre”, Revista Colombiana de Materiales, (5): 277–282, 2014, ISSN: 2256-1013.

SUN, Y.; DONG, M.; MAO, Y.; FAN, D.: “Analysis on Grinding media Motion in Ball Mill by Discrete Element Method”, En: 1st International Conference on Manufacturing Engineering, Quality and Production Systems I, pp. 227-231, 2009.

WANG, Y.; MASON, M.T.: “Two Dimensional Rigid-body Collisions with Friction”, Journal of Applied Mechanics, 59: 635–642, 1992, ISSN: 2379-0431.

WANG, Y.; ZHANG, Z.; XU, Y.; XI, Y.: Tensile Fracture Simulation in Rock Using Augmented Virtual Internal Bond Method, Rock Mechanics and Its Applications in Civil, Mining and Petroleum Engineering, Ed. American Society of Civil Engineers, 13-19 p., 2014, ISBN: 978-0-7844-1339.

WILLS, B.: Wills’ Mineral Processing Technology: An Introduction to the Practical Aspects of Ore Treatment and Mineral Recovery, Ed. Butterworth Hein, 2006, ISBN: 978-0-08-097054-7.

WOOD, A.L.: “Uniaxial Extension and Compression in Stress-Strain Relations of Rubber”, Journal of Research of the National Bureau of Standards, 82: 57 – 63, 1977, ISSN: 0160-1741.

YU, Y.S.; ZHAO, Y.P.: “Deformation of PDMS Membrane and Micro-cantilever by a Water Droplet: Comparison between Mooney–Rivlin and Linear Elastic Constitutive Models”, Journal of Colloid and Interface Science, 332: 467–476, 2008, ISSN: 0021-9797.

Refbacks

  • There are currently no refbacks.